Overige lasprocessen  













 
Plasmalassen
Zoals de naam al doet vermoeden wordt er bij plasmalassen gebruikgemaakt van een plasma. Het plasma wordt gevormd door een hoge elektrische spanning te creëren tussen een wolframelektrode en het werkstuk, hier langs wordt een gas gevoerd. Door het spanningsverschil wordt het gas elektrisch geleidend en ontstaat er een boog tussen elektrode en werkstuk. De boog moet beschermd worden tegen de invloeden van buiten af, dit gebeurt door een beschermgas.
Plasmalassen is feitelijk een bijzondere vorm van TIG-lassen.

Onderpoederlassen
Onderpoederlassen is een zeer productief proces met een elektrische boog die onder een laag poeder ligt. Het poeder vormt een slak die het smeltbad beschermt tegen de invloeden van de lucht. Bovendien kunnen hiermee de mechanische eigenschappen van de las worden beinvloed. De stroomsterktes bij onderpoederlassen kunnen heel hoog oplopen waardoor er een dikke draad gebruikt kan worden en de neersmeltsnelheid erg hoog komt te liggen. Overigens gebruikt men meestel draaddiameters van 2,4 ,3,2 en 4 mm. Door het gebruik van poeder kan er helaas maar in enkele posities gelast worden, namelijk horizontaal onder de hand, een staande hoeklas en horizontaal uit de zij. Naast het lassen met 1 draad zijn er veel verschillende varianten, onder andere met 2 of meer draden (twin, tandem, drie-draads… ) met een strip (0,5 mm dik en 30-120 mm breed voor het oplassen van een cladlaag

Exothermisch lassen
Bij het exothermisch lassen wordt gebruikgemaakt van een zeer snel verlopende chemische reactie, waarbij veel warmte vrijkomt. Hierdoor worden de te verbinden delen bij de naad vloeibaar, terwijl er tegelijkertijd met een gietkroes vloeibaar materiaal toegevoegd wordt. Het exothermisch lassen wordt onder andere gebruikt voor het aan elkaar lassen van spoorstaven en het verbinden van koperen draden. Bij dit laatste proces wordt de warmte opgewekt doordat aluminium koper reduceert, waarbij veel energie vrijkomt, en het koper vloeibaar wordt.

Druklassen
Druklassen is historisch gezien de eerste vorm van lassen, het vindt zijn oorsprong in het smidsvuur. Wellen of smeden genaamd. Het door hitte in een deegachtige toestand gebrachte metaal wordt vervolgens onder druk van hamerslagen aan elkaar gelast. Men onderscheid kouddruklassen en warmdruklassen. Bij kouddruklassen worden werkstukken zonder toevoeging van warmte, dus allen onder invloed van (zeer grote) druk aan elkaar gelast. Overigens wordt dit procedé tegenwoordig als verouderd beschouwd en hierdoor wordt steeds minder vaak toegepast.

Explosielassen
Explosielassen is een uitermate gewelddadig proces dat alleen door gespecialiseerde bedrijven kan worden uitgevoerd. Met explosielassen, ook wel schokgolflassen genoemd, kunnen (zeer) ongelijksoortige metalen toch tot een volkomen intermetallische verbinding komen. Het wordt voornamelijk gebruikt om twee platen van verschillende materialen, zoals staal en aluminium, op elkaar te lassen. De twee platen worden met een bepaalde tussenruimte op elkaar gelegd en op de bovenste plaat wordt een explosieve laag aangebracht. Als deze lading tot ontploffen komt, worden de platen door de eenmalige schokgolf onder extreme druk met elkaar verbonden. Bij dit proces speelt smelthitte geen noemenswaardige rol. Bij explosielassen is de las zo sterk als de zwakste van de gebruikte onderdelen.

Stiftlassen
Stiftlassen wordt vooral gebruikt om kleine bouten, stukken rond of andere kleine dingen op een plaat te bevestigen. De te lassen stift wordt in een pistool gebracht en bij het inschakelen van de machine wordt er kortstondig een elektrische boog tussen de stift en het materiaal getrokken. Als het materiaal en de stift zijn gesmolten wordt de stift met grote kracht het materiaal in geschoten. Door de aanwezigheid van een elektrische boog en een smeltbad hoort stiftlassen eigenlijk bij zowel druklassen als smeltlassen.

Weerstandlassen
Weerstandlassen van vandaag de dag wordt met machines en elektriciteit gedaan. De warmte die nodig is om het materiaal in deegachtige toestand te brengen wordt verkregen door de weerstand die ontstaat op de overgang tussen de te lassen delen door er een zeer hoge stroom doorheen te jagen. Deze stroom overschrijdt de weerstand van het materiaal waardoor het smelt. Als het materiaal in deegachtige toestand is wordt er druk uitgeoefend op de lasplaats waardoor er een lasverbinding ontstaat. De lasspanning bij dit proces is slechts enkele Volt maar de stroomsterkte kan oplopen tot 20.000 ampre.
Belangrijke parameters bij het weerstandlassen zijn elektrodedruk/tijd/stroom en de elektrodegeometrie.
Het vlak op de elektroden waartussen het materiaal wordt ingeklemd moet een zekere radius hebben. Hierdoor wordt oa.de lasdiameter bepaald.

Puntlassen
Puntlassen is tegenwoordig het meest voorkomende weerstandlasproces. Het vindt zijn toepassing onder andere bij het maken van overlapverbindingen in dunne plaat. Vooral de automobielindustrie maakt er op grote schaal gebruik van. De te verbinden delen worden tussen twee koperen elektrodes geleid waardoor een hoge stroom gaat lopen en tegelijkertijd worden de elektroden onder druk gezet waardoor een lasverbinding ontstaat. De elektroden zijn de belangrijkste delen van een puntlasmachine, deze moeten zo weinig mogelijk weerstand bieden aan de lasstroom en bestand zijn tegen de krachten die erop komen te staan. Daarom wordt er meestal gekozen voor koper/chroom legeringen daar dit een compromis levert tussen een lage soortelijke weerstand en hoge sterkte tegen vervorming die kan ontstaan door warmte en druk. Vanwege de hoge temperaturen die bij het proces vrij komen worden de elektroden meestal inwendig gekoeld met vloeistof (meestal met gewoon water).

Rolnaadlassen
Rolnaadlassen is te vergelijken met puntlassen, alleen worden de puntvormige elektroden vervangen door koperen rollen. Deze worden aangedreven door een elektromotor met vertraging waarvan de snelheid nauwkeurig in te stellen is. Door druk en een pulserende stroom door de rollen te sturen kan worden gelast. Door de snelheid in combinatie met het aantal laspulsen per tijdseenheid nauwkeurig in te stellen kunnen veel lasvormen ingesteld worden. Denk hierbij bijvoorbeeld aan brandstoftanks van auto's. Vanwege de gewenste vloeistofdichtheid moeten de lassen elkaar overlappen. Ook kunnen, door anders in te stellen, (punt)lassen met een regelmatige afstand ten opzichte van elkaar worden gelegd. Rolnaadlassen wordt veel gebruikt in de radiator industrie en bij de productie van staal.

Projectielassen
Projectielassen is ook een vorm van weerstandlassen met het verschil dat er op de te lassen delen een kraagje is aangebracht. Deze verdikkingen zitten op de lasplaatsen en vormen een soort toevoegmateriaal. Na het indrukken door de machine in combinatie met een hoge lasstroom zijn deze verdikkingen geheel opgegaan in de las. Dit proces wordt onder andere veel toegepast in de automobielindustrie, bijvoorbeeld de op het plaatwerk gelaste moeren, onder andere te zien onder de motorkap van een auto.

Drukstuiklassen
Bij drukstuiklassen worden de twee voorwerpen met elkaar in contact gebracht. Men laat een elektrische stroom door de twee voorwerpen lopen. Deze zorgt voor een temperatuursverhoging in het contactvlak tussen de twee voorwerpen, zodat het metaal in het contactvlak smelt. De twee stukken worden dan met grote kracht tegen elkaar geduwd, zodat de twee voorwerpen aan elkaar verbonden worden. Deze methode wordt minder gebruikt dan het afbrandstuiklassen, omdat de kwaliteit (vooral in vermoeiing) lager is en bij dit proces een goede oppervlaktekwaliteit vereist is.

Afbrandstuiklassen
Dit proces is speciaal ontwikkeld voor het aan elkaar lassen van stukken rond, vierkant en profielen. Afbrandstuiklassen wordt ook toegepast in productielijnen in staalfabrieken om rollen staal aan elkaar te lassen als ze in bijvoorbeeld een beitserij worden gevoed. De te lassen delen worden na het inschakelen van de stroom afwisselend van en naar (of alleen naar)elkaar toegebracht, waardoor er bij aanraking kortsluiting ontstaat en vlak voor de aanraking een vlamboog. Dit veroorzaakt de hitte die nodig is om de te lassen delen in deegachtige toestand te brengen. Als de aanrakingsvlakken in de juiste toestand zijn worden ze met grote kracht op elkaar gedrukt waarna de lasverbinding ontstaat. Door dit aandrukken ontstaat een uitstulping aan de buitenzijden van de las die evt kan worden afgeschaafd (in geval van productielijnen in staalfabrieken). Bijkomend voordeel is dat in principe geen schermgas hoeft te worden gebruikt omdat eventuele oxides tijdens het stuiken naar buiten worden gedrukt. Bij afbrandstuiklassen wordt in de praktijk vaak gewoon aardgas gebruikt dat tijdens het lassen ontbrand en zo alle zuurstof verbruikt. Bijkomend voordeel hierbij is dat het procesvenster wordt vergroot, dwz dat er minder ver hoeft te worden gestuikt om toch een goede oxidevrije verbinding te krijgen. Zo kunnen hardere staalsoorten of dikkere plaat toch worden gelast.

Laserlassen
Laserlassen is een lasproces dat vooral wordt toegepast in de automobielindustrie. Industriële lasers hebben doorgaans een uitgaand vermogen -in de vorm van infrarood licht- dat ligt tussen de 2 en 10 kW. Dit vermogen wordt via optieken (lenzen en spiegels) gefocusseerd tot een laserspot van ongeveer een halve millimeter doorsnee. De energiedichtheid is zo hoog dat dit proces uitstekend geschikt is om grote penetratiedieptes te bereiken en toch zeer hoge voortloopsnelheden kan behalen. Voor een 2 mm dikke plaat staal waarbij gebruik wordt gemaakt van een 6 kW laser kan de lassnelheid oplopen tot zo'n 5 meter per minuut. Bij laserlassen ontstaat -indien het plaatmateriaal betreft- een gaatje dat meeloopt met de laser en zich continu sluit achter de spot. Deze manier van lassen wordt keyhole lassen genoemd. Een ander groot voordeel van laserlassen is dat ondanks de hoge energiedichtheid toch met een relatief lage warmte-inbreng wordt gelast. Dat komt doordat de las zeer smal is en door de hoge energiedichtheid zeer snel. Slechts een kleine hoeveelheid metaal wordt hierdoor gesmolten.

Wrijvingslassen
Rotatielassen valt onder de categorie wrijving lassen. De geometrie van het te lassen onderdeel is bij deze methode bepalend.De te verbinden vlakken worden met een bepaalde druk tegen elkaar aan gedrukt. Door een roterende beweging te maken worden de oppervlaktes warm en zullen deze plastificeren. Daarna worden de roterende materialen afgeremd, en zullen de materialen zich met elkaar verbinden.

Diffusielasprocessen
Diffusielassen wordt weinig toegepast en is zo genoemd, omdat door de toenemende temperatuur de moleculen naar open plaatsen gaan (diffunderen) en zo de holten en poriën opvullen. Dit gebeurt voornamelijk op het grensvlak.
Bij deze methode kunnen ook verschillende soorten materiaal met elkaar verbonden worden.
De te lassen delen moeten na een mechanische voorbewerking zeer schoon gemaakt en onder druk in een inerte of vacuümomgeving tegen elkaar gehouden worden.

Elektronenbundellassen
Hierbij wordt het werkstuk bestookt met een bundel elektronen. Dit is alleen mogelijk in vacuüm, zodat deze methode maar weinig gebruikt wordt. Voordeel van deze methode is dat de bundel (net als een elektronenbundel in een traditioneel TV-toestel) uiterst nauwkeurig kan worden gestuurd, en verder dat de beschermende oxidelaag zoals die bv voorkomt bij aluminium, ook verdampt en door afwezigheid van zuurstof ook niet meer opnieuw gevormd wordt tijdens het lasproces.
Met elektronenbundels is het mogelijk om in zeer dikke materialen toch smalle lassen te maken, bv. Een las met een breedte van 5 mm. In materiaal van 150 mm. Dik.
Net als bij laserlassen wordt hier gebruik gemaakt van de keyhole techniek